

On the Move

Activity Sheet

EducationCity

 Class:Name:
Write the weight of the items in the boxes. Do not forget to write the N for Newtons. One has been done for you.
(1) scarf

weight $=0.75 \mathrm{~N}$

(3) set of keys

weight $=0.25 \mathrm{~N}$

4 jar of jam

weight $=6.5 \mathrm{~N}$

Do the same for these items but be careful, the scales on these forcemeters are different.
(5) pile of books

weight $=12 \mathrm{~N}$

6 television

weight $=40 \mathrm{~N}$
(7) cooker

weight $=150 \mathrm{~N}$

8 fridge

weight $=165 \mathrm{~N}$

Can I investigate what happens to water in cups when it is dropped?

Equipment

2 plastic or foam cups
Water, Children scissors

Instructions

Take the cups and a jug of water outside to complete this investigation.
Half fill one cup with water and drop it to the floor from chest height. Watch what happens.
Make holes in the bottom of the other cup and half fill it with water - watch what happens to the water.

Then half fill the cup with holes in again and drop the cup from chest height and watch what happens.

What happened when you dropped a complete cup of water?
The cup dropped quickly to the floor and the water spilled out of it. Gravity caused it to fall.

What happened when you put holes in the cup and filled it with water?
As I held the cup the water poured out of the holes because gravity makes the water want to fall to the ground if it can.

What happened when you dropped the cup full of water with holes in?
As I dropped the cup I notices that the water did not fall out of the holes until the cup hit the ground.

Why do you think the water did not come out of the holes when you dropped the cup?
I think the water stayed in the cup because gravity is pulling on the cup and the cup and water are falling at the same speed

- Newton and Gravity Answers

1. When was Isaac Newton born? Isaac Newton was born in 1643.
2. Why did Newton move from Cambridge to Woolsthorpe Manor?

Newton moved to Woolsthorpe Manor because plague broke out.
3. What fruit did Newton see falling from a tree?

Newton saw an apple falling from a tree.
4. In which direction does gravity pull objects?

Gravity pulls objects down towards the centre of the Earth.
5. Why does the Moon stay in orbit around the Earth?

The Moon stays in orbit around the Earth because gravity pulls it towards the Earth.
6. What are forces measured in?

Forces are measured in newtons (N).
7. What did Albert Einstein think of Isaac Newton?

Albert Einstein thought that Isaac Newton had one of the most brilliant minds of anyone who had ever lived and that he was a 'shining spirit'.
8. What can still be seen from Isaac Newton's old bedroom window?

The apple tree that inspired Newton's ideas about gravity can still be seen from his old bedroom window.

Name:
\qquad Class:

Compare the mass of the objects.
1 How much heavier is the ruler than the pencil?

(2) How much heavier is the rubber than the scissors?

$$
\text { و } 19
$$

(3) How much heavier is the stapler than the glue stick?

4 How much heavier is the glue stick than the ruler?

5 How much heavier is the pencil than the rubber?

6 How much heavier is Sten's pile of books than Klara's pile?

7 How much heavier is Rosa's pile of books than Sten's?

8 How much heavier is Sten's pile of books than Manu's?

9 How much heavier is Rosa's pile of books than Klara's?

10 How much heavier is Klara's pile of books than Sten's?

Name: \qquad
What do you know about friction?
Write a list of facts in the box cart below.

Can you make some predictions?
What do you think will happen when the following surfaces meet?
(1) A car on ice

(2) A car on grass whorawhlo

3

The car will travel faster on the ice because ice is smooth and slippery. This means there is a low level of friction.

Grass is bumpy so there will be a higher level of friction. This will slow the car down.

The hands will warm up because friction produces heat.

Suggested answers

Talk about Forces Answers

To identify forces octing on objects.

Read the story together. Highlight or underline examples of forces in the story. Then, in the second column, briefly explain the forces that are being applied in each example. The first one has been done for you.

The magician reached inside her magic bos and lifted up a gigantic magic wand high into the air.

She pushed her very herovy magic bax olong the wonden floor so that it was by the side of the stage.

Neat, she juggled with silk handkerchiefs. After she threw them into the air, thay fell. gently downwards for her to catch.

After she lifted a rohat penguin out of the box. She held it high in the air.

There was a sereen behind the magician and she pushed the sereen to one side. Behind the sereen was a paddling pool. The magician placed the penguin into the water and it started to swim a length of the pool.

The children laughed and cheered, although they weren't sure what was magieal about the robot swimming in the pool! The mangician ended her show by popping a big party popper. The popper shot long strips of colourful paper inte the air, which then fell. saftly to the pround.

The magician's force is lifting it up and gravity is pulling it down to Earth.

The magician's force is pushing the magic bor and friction is pushing againg the bor where the flopr and the bor make contact, slowing dow the menement.

The magician's force is throwing them inte the air Gravity is poling the sill seanes donsiond air resistance is puothing thew uphards and slowing them down

The magician's force is lifting it up and gravity is pulling it down to Earth.

The magician's force is pushing the screen and friction is pushing against the screen where the floor and the screen make contact, sloning down the mevement.

The pengwin's force is pushing it fornords and water resistance is pushing agoinst it.

The face of the party popper shouts the pieces of paper into the air and then gravity pulls thew down They go deser slowly because dir resistance pushes op agoinst them.

MASTERS CHALLENGE 2x2=4	$24 \div 6=4$	$10 \times 9=90$
$8 \times 7=56$	$44 \div 4=11$	$8 \times 12=96$
$3 \times 3=9$	$3 \times 4=12$	$8 \times 8=64$
$5 \times 4=20$	$4 \times 4=16$	$54 \div 9=6$
$1 \times 1=1$	$5 \times 3=15$	$40 \div 8=5$
$48 \div 6=8$	3 $\times 8=24$	$6 \times 3=18$
28 $\div 4=7$	$60 \div 12=5$	$6 \times 12=72$
$3 \times 6=18$	$36 \div 3=12$	$3 \times 6=18$
$4 \times 7=28$	$4 \times 11=44$	$4 \times 12=48$
$4 \times 5=20$	$3 \times 5=15$	$9 \times 5=45$
$9 \times 7=63$	$9 \times 11=99$	$9 \times 12=108$
42 $\div 7=6$	$4 \times 8=32$	$8 \times 9=72$
$45 \div 5=9$	$12 \times 11=132$	$12 \times 12=144$
$5 \times 6=30$	$9 \div 1=9$	$10 \div 5=2$
$3 \times 7=21$	$10 \times 3=30$	$6 \times 6=36$
$2 \times 9=18$	$9 \times 9=81$	90 $\div 10=9$
$36 \div 9=4$	$8 \times 3=24$	$10 \times 10=100$
$121 \div 11=11$	$72 \div 9=8$	10×3=30
$1 \times 7=7$	$66 \div 6=11$	48 $\div 4=12$
$8 \times 4=32$	$1 \times 10=10$	$54 \div 6=9$
$99 \div 9=11$	$6 \times 5=30$	$108 \div 9=12$
$5 \times 7=35$	$5 \times 11=55$	$5 \times 12=60$
$9 \times 2=18$	$2 \times 8=16$	$8 \times 10=80$
$7 \times 7=49$	$7 \times 11=77$	$7 \times 12=84$
$11 \times 7=77$	$11 \times 11=121$	$11 \times 12=132$
$6 \times 10=60$	$63 \div 7=9$	$3 \times 9=27$
$3 \times 7=21$	$3 \times 11=33$	$3 \times 12=36$
$8 \times 5=40$	$4 \times 10=40$	18 $\div 2=9$
$2 \times 11=22$	$6 \times 9=54$	$10 \times 10=100$
$8 \times 7=56$	$60 \div 5=12$	$12 \div 1=12$
$4 \times 7=28$	$84 \div 7=12$	$9 \times 7=63$
$88 \div 8=11$	$10 \times 11=110$	72 $\div 6=12$

$10 \times 7=70$	$10 \times 11=110$	$10 \times 12=120$
$3 \times 12=36$	$120 \div 12=10$	$36 \div 3=12$

Master Master Challenge

$72 \div 8=9$	$6 \div 1=6$	$56 \div 7=8$	$18 \div 2=9$
$64 \div 8=8$	$18 \div 3=6$	$24 \div 3=8$	$40 \div 8=5$
$28 \div 7=44$	$30 \div 6=5$	$8 \div 8=1$	$56 \div 7=8$
$9 \div 9=1$	$32 \div 8=4$	$12 \div 4=3$	$24 \div 6=4$
$54 \div 9=6$	$12 \div 4=3$	$35 \div 7=5$	$12 \div 2=6$
$40 \div 8=5$	$18 \div 6=3$	$15 \div 3=3$	$9 \div 1=9$
$1 \div 1=1$	$16 \div 8=2$	$56 \div 8=7$	$35 \div 7=5$
$63 \div 9=7$	$2 \div 2=1$	$36 \div 4=9$	$42 \div 6=7$
$27 \div 9=3$	$36 \div 4=9$	$9 \div 1=9$	$15 \div 5=3$
$16 \div 2=8$	$54 \div 6=9$	$12 \div 6=2$	$6 \div 1=6$
$7 \div 1=7$	$72 \div 9=8$	$36 \div 9=4$	$9 \div 9=1$
$12 \div 3=4$	$14 \div 2=7$	$30 \div 5=6$	$24 \div 6=4$
$27 \div 3=9$	$24 \div 4=6$	$6 \div 1=6$	$45 \div 5=9$
$10 \div 2=5$	$30 \div 6=5$	$48 \div 6=8$	$8 \div 4=2$
$16 \div 4=4$	$45 \div 9=9$	$2 \div 2=1$	$7 \div 1=7$
$3 \div 3=1$	$16 \div 4=4$	$21 \div 7=3$	$9 \div 9=1$
$18 \div 3=6$	$21 \div 7=3$	$9 \div 3=3$	$30 \div 5=6$
$40 \div 5=8$	$81 \div 9=9$	$30 \div 6=5$	$32 \div 4=8$
$32 \div 4=8$	$16 \div 2=8$	$14 \div 2=7$	$12 \div 3=4$
$24 \div 4=6$	$35 \div 5=7$	$56 \div 8=7$	$63 \div 9=7$
$45 \div 5=9$	$49 \div 7=7$	$36 \div 4=9$	$24 \div 8=3$
$40 \div 5=8$	$54 \div 9=6$	$18 \div 9=2$	$25 \div 5=5$
$20 \div 4=5$	$15 \div 3=5$	$20 \div 5=4$	$32 \div 4=8$
$48 \div 6=8$	$20 \div 5=4$	$24 \div 8=3$	$36 \div 9=4$

$$
\begin{array}{|l|l|l|l|}
\hline 54 \div 6=9 & 28 \div 7=4 & 24 \div 4=6 & 48 \div 8=6 \\
\hline
\end{array}
$$

